AtBXL1 encodes a bifunctional beta-D-xylosidase/alpha-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells.
نویسندگان
چکیده
Following pollination, the epidermal cells of the Arabidopsis (Arabidopsis thaliana) ovule undergo a complex differentiation process that includes the synthesis and polar secretion of pectinaceous mucilage followed by the production of a secondary cell wall. Wetting of mature seeds leads to the rapid bursting of these mucilage secretory cells to release a hydrophilic gel that surrounds the seed and is believed to aid in seed hydration and germination. A novel mutant is identified where mucilage release is both patchy and slow and whose seeds display delayed germination. While developmental analysis of mutant seeds reveals no change in mucilage secretory cell morphology, changes in monosaccharide quantities are detected, suggesting the mucilage release defect results from altered mucilage composition. Plasmid rescue and cloning of the mutant locus revealed a T-DNA insertion in AtBXL1, which encodes a putative bifunctional beta-d-xylosidase/alpha-l-arabinofuranosidase that has been implicated as a beta-d-xylosidase acting during vascular development. Chemical and immunological analyses of mucilage extracted from bxl1 mutant seeds and antibody staining of developing seed coats reveal an increase in (1-->5)-linked arabinans, suggesting that BXL1 is acting as an alpha-l-arabinofuranosidase in the seed coat. This implication is supported by the ability to rescue mucilage release through treatment of bxl1 seeds with exogenous alpha-l-arabinofuranosidases. Together, these results suggest that trimming of rhamnogalacturonan I arabinan side chains is required for correct mucilage release and reveal a new role for BXL1 as an alpha-l-arabinofuranosidase acting in seed coat development.
منابع مشابه
An a-L-arabinofuranosidase/b-D-xylosidase from immature seeds of radish (Raphanus sativus L.)
The carbohydrate moieties of arabinogalactan proteins (AGPs) are essential for their physiological functions and undergo rapid turnover in vivo. Degradation of the carbohydrate moieties of AGPs seems to occur by concerted action of several glycosidases, among them a-L-arabinofuranosidase, b-Dgalactosidase, and b-D-glucuronidase. Here, a bifunctional a-L-arabinofuranosidase/b-D-xylosidase from i...
متن کاملPurification, functional characterization, cloning, and identification of mutants of a seed-specific arabinan hydrolase in Arabidopsis.
This work describes the purification and characterization of an enzyme that exhibits arabinan hydrolase activity in seeds of Arabidopsis thaliana. The enzyme, designated XYL3, had an apparent molecular mass of 80 kDa when purified to homogeneity, and was identified using MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) as a putative beta-D-xylosidase that belongs to family...
متن کاملProperties of selected hemicellulases of a multi-enzymatic system from Penicillium funiculosum.
A multi-enzymatic system from Penicillium funiculosum displayed alpha-L-arabinofuranosidase, endo-1,4-beta-D-xylanase, beta-D-xylosidase and endo-1,3-1,4-beta-D-glucanase activities at high levels over a wide acidic pH range of 2.0 to 5.5. Moreover, the pH stability was particularly extended over the wide range of pH of 2.0 to 8.0 with endo-1,3-1,4-beta-D-glucanase and endo-1,4-beta-D-xylanase;...
متن کاملCloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae.
A cDNA expression library of Trichoderma reesei RutC-30 was constructed in the yeast Saccharomyces cerevisiae. Two genes, abf1 and bxl1, were isolated by screening the yeast library for extracellular alpha-L-arabinofuranosidase activity with the substrate p-nitrophenyl-alpha-L-arabinofuranoside. The genes abf1 and bxl1 encode 500 and 758 amino acids, respectively, including the signal sequences...
متن کاملCharacterization of expression, and cloning, of beta-D-xylosidase and alpha-L-arabinofuranosidase in developing and ripening tomato (Lycopersicon esculentum Mill.) fruit.
Modifications to the cell wall of developing and ripening tomato fruit are mediated by cell wall-degrading enzymes, including a beta-d-xylosidase or alpha-l-arabinofuranosidase, which participate in the breakdown of xylans and/or arabinoxylans. The activity of both enzymes was highest during early fruit growth, before decreasing during later development and ripening. Two beta-d-xylosidase cDNAs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 150 3 شماره
صفحات -
تاریخ انتشار 2009